The aim of this study was to verify the validity of the curvature constant parameter (W'), calculated from 2-parameter mathematical equations of critical power model, in estimating the anaerobic capacity and anaerobic work capacity from a table tennis-specific test. Specifically, we aimed to i) compare constants estimated from three critical intensity models in a table tennis-specific test (C_f); ii) correlate each estimated W' with the maximal accumulated oxygen deficit (MAOD); iii) correlate each W' with the total amount of anaerobic work (W_{ANAER}) performed in each exercise bout performed during the C_f test. Nine national-standard male table tennis players participated in the study. MAOD was 63.0(10.8) mL·kg$^{-1}$ and W' values were 32.8(6.6) balls for the linear–frequency model, 38.3(6.9) balls for linear–total balls model, 48.7 (8.9) balls for Nonlinear–2 parameter model. Estimated W' from the Nonlinear 2-parameter model was significantly different from W' from the other 2 models ($P<0.05$). Also, none W' values were significantly correlated with MAOD or W_{ANAER} (r ranged from −0.58 to 0.51; $P>0.13$). Thus, W' estimated from the 2-parameter mathematical equations did not correlate with MAOD or W_{ANAER} in table tennis-specific tests, indicating that W' may not provide a strong and valid estimation of anaerobic capacity and anaerobic capacity work.

By:

Access to the paper: